Chemical Applications of ⁹⁹Tc NMR Spectroscopy: Preparation of Novel Tc(VII) Species and Their Characterization by Multinuclear NMR Spectroscopy Kenneth J. Franklin, Colin J. L. Lock, Brian G. Sayer, and Gary J. Schrobilgen* Contribution from the Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada. Received August 3, 1981. Revised Manuscript Received March 24, 1982 Abstract: The 99Tc NMR parameters of a number of Tc(VII) and one Tc(V) species have been determined. The anion TcO₄ $(\Xi = 22.508311 \text{ MHz in H}_2\text{O})$ was chosen as the standard for ⁹⁹Tc NMR spectroscopy. A ⁹⁹Tc-¹⁷O coupling constant of 131.4 Hz was obtained from a 17 O- and 18 O-enriched sample of 17 CO isotopic isomers. Technetium-99 and proton 0.22 ppm/mass number arising from a statistical distribution of 16 O/ 17 O/ 18 O isotopic isomers. Technetium-99 and proton NMR provided definitive proof for the existence of the stereochemically nonrigid TcH₉²⁻ anion. Both TcO₃F and the novel TcO₃+ cation were synthesized and characterized by ⁹⁹Tc, ¹⁷O, and ¹⁹F NMR spectroscopy. Preliminary results on two new technetium(VII) oxyfluorides tentatively identified as F₂O₂TcOTcO₂F₂ and TcO₂F₃ are also reported. The diamagnetic d² anion, TcO₂(CN)₄³⁻, represents the most deshielded ⁹⁹Tc environment encountered in the present study. Technetium chemistry is of considerable interest in medical diagnoses because of the extensive use of 99mTc complexes as scanning agents. Technetium-99 is the only NMR-active technetium isotope $(I = ^9/_2)$ possessing a significantly long half-life (0.29 MeV β , $t_{1/2} = 2.12 \times 10^5$ years). It is obtained in 100% abundance and has a receptivity relative to ¹H of 0.275. Technetium-99 is produced either by neutron bombardment of molybdenum followed by decay of ^{99m}Tc to ⁹⁹Tc or in the fission of ²³⁵U or ²³⁹Pu. Owing to the high NMR detection receptivity of ⁹⁹Tc and almost complete lack of reliable published data on ⁹⁹Tc NMR, we have undertaken a preliminary broad-ranging NMR study of this nucleus. With the exception of the observation of the TcO₄ resonance, this nuclide has been all but ignored as an NMR nucleus. In the present study we have established the ranges of ⁹⁹Tc NMR parameters of d⁰ Tc(VII) and d² Tc(V) species. With the aid of ⁹⁹Tc, ¹⁷O, ¹⁹F, and ¹H NMR, we have significantly extended the number of known Tc(VII) species, which prior to this study was limited to TcO₄-, Tc₂O₇, Tc₂S₇, TcO₃F, TcO₃Cl, and the report of the partially characterized TcH₂²⁻ anion. Although 99Tc possesses an appreciable quadrupole moment $(Q = -0.19 (5) \times 10^{-28} \text{ m}^2)$, the effect of quadrupole line broadening is attenuated by the large size of the spin, I, in the relaxation eq 1 ($\Delta \nu$ is the line width, T_2 the transverse relaxation $$\pi \Delta \nu = \frac{1}{T_2} \simeq \frac{1}{T_1} = \frac{3\pi^2}{10} \left(\frac{2I+3}{I^2(2I-1)} \right) \left(1 + \frac{\eta^2}{3} \right) \left(\frac{e^2 qQ}{h} \right)^2 \tau_c$$ (1) time, T_1 the spin-lattice relaxation time, eq the electric field gradient at the 99Tc nucleus, and τ_c the molecular correlation time).3 The effect of I is substantial and yields line widths that are among the narrowest of all quadrupolar nuclei studied to date. Consequently, quadrupole line broadening does not appear to place a serious constraint on the observation of 99Tc resonances for species of widely varying molecular symmetries. ## Results and Discussion TcO₄. The tetrahedral TcO₄ anion has been chosen as the standard for 99Tc NMR spectroscopy. Because of the high sensitivity of 99Tc and narrow line width resulting from a cubic electric field at 99 Tc ($\Delta \nu = 2.7$ Hz), an acceptable spectrum of TcO₄ can be obtained from a single transient (signal/noise ≈ 210, pulse width 35 μ s at 2.114 T on a 9.1-mm column of 0.210 M NH₄⁺-TcO₄ in D₂O). The exact resonance frequency of ⁹⁹Tc in the aforementioned pertechnetate sample was determined to be Ξ = 22508311 ± 10 Hz at 25 °C (quoted such that the protons in Me₄Si resonate at exactly 100 MHz). Consequently, all chemical shift data (Table I) are quoted relative to TcO₄. No concentration dependence for NH₄+TcO₄- solutions between 210 and 9.33 × 10⁻⁵ M was detected. Enrichment of TcO_4^- with ^{17}O (21.9% ^{17}O and 42.7% ^{18}O) by exchange with enriched H₂O at 100 °C for 1 week resulted in a ¹⁷O NMR spectrum consisting of an equiintensity decet (Figure 1a) arising from spin-spin coupling of ¹⁷O to ⁹⁹Tc (Table I). The ⁹⁹Tc spectrum yielded, in addition to a strong central line and couplings caused by Tc¹⁷OO₃⁻ and Tc¹⁷O₂O₂⁻ (lines caused by Tc17O3O and Tc17O4 were too weak to be observed), a set of smaller splittings (8.8 Hz at 2.114 T) that appear on each of the main lines (Figure 1b). These splittings are attributed to primary isotopic shielding effects arising from a statistical distribution of ¹⁶O/¹⁷O/¹⁸O isotopic isomers. The calculated intensity ratios agree with the observed intensities, and as anticipated, the more massive isotopic isomers occur at lower frequency. The isotopic shift per oxygen mass unit was 0.22 ppm. TcH₉²⁻. A hydride anion of technetium has been reported previously by Ginsberg⁴ who obtained a ¹H NMR resonance that was compatible with the TcH₉²⁻ anion, consisting of a broad, partially quadrupole-collapsed line ($\Delta \nu \approx 189$ Hz) to high field of Me₄Si. We have repeated the preparation of the hydride by using the method of Ginsberg⁴ and have obtained both the ⁹⁹Tc and ¹H NMR spectra (Figure 2 and Table I). The ⁹⁹Tc resonance was shifted 3672 ppm to high field of TcO₄ and displayed partially resolved binominal decet fine structure with a 99Tc-1H coupling of 24 Hz. The coupling is also in agreement with the observed ¹H spectrum, which consisted of a partially quadrupole-collapsed decet having a line width of 224 Hz. The spectra are consistent with a hydride structure that is fluxional on the NMR time scale and provide definitive proof for the existence of TcH₉²⁻. A significant low-frequency shift relative to TcO₄ is anticipated for Tc(VII) bonded to electropositive centers such as hydridic protons. The observed ⁹⁹Tc chemical shift typifies hydride chemical shifts and represents the most shielded ⁹⁹Tc nucleus observed thus far. The low-frequency position of the ¹H resonance is also characteristic of protons of a hydridic nature bonded to technetium. ^{(1) (}a) Walchli, H.; Livingston, R.; Martin, W. J. Phys. Rev. 1952, 85, 479. (b) Kidd, R. G. J. Magn. Reson. 1981, 45, 88. (c) Buckingham, M. J.; Hawkes, G. E.; Thornback, J. R. Inorg. Chim. Acta 1981, 56, L41. (2) Wendlandt, D.; Bauche, J.; Luc, P. J. Phys. B. 1977, 10, 1989. (3) Harris, R. K. In "NMR and the Periodic Table;" Harris, R. K., Mann, B. E., Eds.; Academic Press: London, 1978, Chapter 1. ⁽⁴⁾ Ginsberg, A. P. Inorg. Chem. 1964, 3, 567. Figure 1. ¹⁷O (a) and ¹⁹Tc (b) NMR spectra of ¹⁷O (21.9%) and ¹⁸O (42.7%) enriched KTcO₄ in H₂O at 25 °C. Isotopic isomers are denoted by (A) TcO₄⁻, (B) Tc¹⁷OO₃⁻, and (C) Tc¹⁷O₂O₂⁻, where a nonsuperscripted O represents ¹⁶O and/or ¹⁸O. Assignments for the insets corresponding to A and B are Tc¹⁶O₄¹⁸O₄, ⁻(A) and Tc¹⁷O¹⁶O₄¹⁸O₃, ⁻(B), where x, the number of ¹⁶O atoms, is indicated. Technetium(VII) Oxyfluorides. Pertechnetate is known to undergo fluorination in anhydrous HF to yield TcO₃F.⁵ Consequently, the ⁹⁹Tc and ¹⁷O spectra of TcO₃F were recorded for ¹⁷O-enriched TcO₄- in anhydrous HF solution (Table I). The high-frequency shifts of both resonances relative to TcO₄- are indicative of fluorination. The ⁹⁹Tc-¹⁷O coupling is, however, similar to that of TcO₄-, suggesting that there is little distortion from the tetrahedral O-Tc-O bond angle. Interestingly, no ¹⁹F-⁹⁹Tc coupling or ¹⁹F resonance could be observed, although Raman spectroscopy⁵ of the sample showed that only TcO₃F was formed. It must be concluded that TcO₃F behaves as a weak fluoride ion base and undergoes exchange with HF according to eq 2. This was confirmed by acidification of a solution of TcO₄- $$TcO_3F + HF \rightleftharpoons TcO_3^+ + HF_2^-$$ (2) in HF with excess AsF₅. Addition of AsF₅ to HF solutions of TcO_3F yielded new ⁹⁹Tc and ¹⁷O resonances to high frequency of TcO_3F . Removal of HF and excess AsF₅ followed by redissolution in HF produced the same chemical shifts (Table I) and indicated that the salt, $TcO_3^+AsF_6^-$, was stable to pumping at room temperature. The new lines are consequently assigned to the hitherto unreported TcO_3^+ cation (D_{3h}) . Noble gas fluorides have been used previously to synthesize examples of high-oxidation-state species of the elements that were inaccessible by other means.⁶ In the present preliminary work, Figure 2. ⁹⁹Tc (a) and ¹H (b) NMR spectra of TcH₉²⁻ (K₂TcH₉ dissolved in 40% aqueous KOH) recorded at -12 °C. Figure 3. ⁹⁹Tc spectrum resulting from the incomplete reaction of KrF_2 with $KTcO_4$ in HF (TcO_3F). Triplet A ($Tc_2O_3F_4$) also results from the reaction of TcO_4^- with XeF_6 in HF and is the only technetium-containing product observed in the XeF_6 system. The broad singlet B (TcO_2F_3) results from the further reaction of $Tc_2O_3F_4$ with KrF_2 . ${\rm KrF_2}$ and ${\rm XeF_6}$ have been used to synthesize new examples of technetium(VII) oxide fluorides. The addition of excess ${\rm XeF_6}$ to a HF solution of ${\rm TcO_3F}$ (containing ${\rm H_2O}$ from the solvolysis of ${\rm TcO_4^-}$) yielded a new ⁹⁹Tc line to high frequency of both ${\rm TcO_3F}$ and ${\rm TcO_3^+}$ that exhibited a 1:2:1 triplet arising from ⁹⁹Tc-¹⁹F spin-spin coupling involving two equivalent fluorine atoms directly bonded to ⁹⁹Tc (Table I). The ¹⁷O and ¹⁹F NMR spectra consisted of partially quadrupole-collapsed decets arising from spin coupling to ⁹⁹Tc. Fluorination of ${\rm TcO_3F}$ with ${\rm KrF_2}$ in HF also yielded the above product, which reacted further with this potent fluorinating agent to give a second new oxyfluoride in HF solution (Figure 3). The latter species, which has been studied by ⁹⁹Tc, ¹⁷O, and ¹⁹F NMR (Table I), yielded singlets in each instance. ^{(6) (}a) Leary, K.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1974, 13, 775. (b) Gillespie, R. J.; Schrobilgen, G. J. Ibid. 1974, 13, 1230. (c) Holloway, J. H.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1975, 623. Table 1. NMR Chemical Shifts and Coupling Constants for Some Tc(V11) and Tc(V) Species | | _ | | | J, Hz | | | | |---|--|--|---|----------------------|-----------------------------|--------------------------------------|---------------| | species | δ ^a 99Tc 17O ^b 19F 1H | | | | | ⁹⁹ Tc-
¹⁹ F | 99 Tc-
1 H | | TcH ₉ ^{2-c}
TcO ₄ -
TcO ₃ Ff,g
TcO ₃ +f,h | -3672 (22)
0 (2.7) ^d
43.7 (23)
160.7 (670) | 748.6 (23) ^e
1048 (108)
1214 (720) ⁱ | | -7 . 22 (224) | 131.4 ^e
139.8 | | 24 | | $Tc_2O_5F_4^{f,j}$ $TcO_2F_3^{f,m}$ | 245.9 (135)
396.3 (375) | 1234 $(780)^k$ 1211 $(\sim 700)^i$ | {22.6 (25 °C, 2280) ^k
{29.3 (-80 °C, 720) ^l
-6.5 (-47 °C, 370) ^l | | 87 (±5) | 259 | | | [TcO2(CN)4]3-n | 806.0 (642) | 1211 (700) | 0.0 (0, 5.10) | | | | | ^a Spectra were recorded and referenced externally at 25 °C unless indicated otherwise. The chemical shift convention is that outlined by 1UPAC (Pure Appl. Chem. 1972, 29, 627; 1976, 45, 217): ⁹⁹Tc, aqueous NH₄+TcO₄- (0.132 M); ¹⁷O, H₂O; ¹⁹F, CFCl₃. The values in parentheses denote the line width $\Delta\nu$ in hertz. ^b The spectra were obtained from samples containing 21.9% ¹⁷O and 42.7% ¹⁸O. ^c K₂TcH₉ was dissolved in 40% KOH in H₂O solvent at -19 °C and the spectra were recorded at -12 °C. The ⁹⁹Tc line width was measured from the ¹H-decoupled spectrum. ^d The Tc¹⁶O₄- line is taken as the reference line, and $\Delta\nu$ is quoted for that line. ^e A previously reported ¹⁷O NMR study of TcO₄- yielded only a single ¹⁷O resonance ($\Delta\nu \approx 1150$ Hz) from ¹⁷O-enriched TcO₄-; (Figgis, B. N.; Kidd, R. G; Nyholm, R. S. Proc. R. Soc. London, Ser. 1962, 269, 469. ^f Spectrum recorded in HF solvent. ^g TcO₃F was generated by dissolution of KTcO₄ in anhydrous HF. ^h Prepared by the reaction of excess AsF₅ with an HF solution of KTcO₄ (see text). ⁱ The line is a partially quadrupole-collapsed decet arising from coupling to ⁹⁹Tc and is "square-topped", i.e., no multiplet lines are resolved. ^j Prepared by the reaction of TcO₃F with XeF₆ or KrF₂ in HF solvent. Resonances due to XeOF₄ (δ¹⁹F 93.8, δ¹⁷O₃ 315.7, J¹²⁹X_C-¹⁹F = 1202 Hz, and J¹²⁹X_C-¹⁷O = 696 Hz) and XeF₄ (δ¹⁹F - 24.1, J¹²⁹X_C-¹⁹F_e = 3870 Hz) were also observed (-80 °C) in the reaction of TcO₃F with XeF₆. ^k The line is partially quadrupole-collapsed arising from ⁹⁹Tc coupling and is saddle shaped with the two outer lines being clearly resolved. The line width refers to the entire envelope. ¹ The line is a nearly completely quadrupole-collapsed decet (due to ⁹⁹Tc coupling) and is Lorentzian in shape. ^m Prepared by the reaction of excess KrF₂ with Tc₂O₃F₄ in HF solvent. ⁿ Spectrum recorded in H₂O solvent. The low-frequency ^{99}Tc triplet (Figure 3) is tentatively assigned to $Tc_2O_5F_4$ (structure I) and the broad ^{99}Tc singlet to TcO_2F_3 (structure II). Xenon oxide tetrafluoride is observed in addition to xenon tetrafluoride and O₂ gas in reactions with XeF₆ (eq 3). $$2\text{TcO}_3\text{F} + \text{XeF}_6 \rightarrow \text{I} + \text{XeF}_4 + 0.5\text{O}_2$$ (3) Xenon oxide tetrafluoride arises from the reaction of XeF_6 with H_2O formed by HF solvolysis of TcO_4^- . Oxygen and krypton gases are liberated in reactions of TcO_3F with KrF_2 (eq 4 and 5). In $$2\text{TcO}_3\text{F} + \text{KrF}_2 \rightarrow \text{I} + \text{Kr} + 0.5\text{O}_2$$ (4) $$I + KrF_2 \rightarrow 2II + Kr + 0.5O_2$$ (5) the case of KrF_2 oxidations, water generated in the solvolysis of TcO_4^- is quantitatively oxidized to yield O_2 and HF. Chemical exchange of fluorines among solvent and TcO₂F₃ sites accounts for our failure to observe 99Tc-19F coupling in this case as well as our observation of only a single broad 19F environment at low temperature (Table I). The broad ¹⁷O resonance for TcO₂F₃ is attributable to partial collapse of the ⁹⁹Tc-¹⁷O coupling brought about by quadrupole relaxation of 99Tc in the asymmetric electric field of a trigonal bipyramid and by fluctuating electric field gradients arising from chemical exchange of fluorine ligands. We can rule out the possibility that TcOF₅ is formed in the oxidation of Tc₂O₅F by excess KrF₂. Unlike the substance identified as TcO₂F₃, which is coordinately unsaturated, TcOF₅ (C_{4v}) should behave like the related pseudooctahedral ReOF₅ and IOF₅ molecules and would not be expected to exhibit chemical exchanged among its axial and equatorial fluorine environments and HF solvent. Our failure to observe two nonlabile fluorine environments as well as the observed exchange behavior attributed to TcO₂F₃ is consistent with the proposed formulation of the latter oxyfluoride and inconsistent with TcOF5 formation. The observation of $^{99}\text{Tc}^{-19}\text{F}$ coupling for $\text{Tc}_2\text{O}_5\text{F}_4$ indicates the rate of fluorine exchange is slow. Only one oxygen environment could however be observed for the oxygen-bridged structure proposed for $\text{Tc}_2\text{O}_5\text{F}_4$. The partially resolved $^{99}\text{Tc}^{-17}\text{O}$ coupling is consistent with the lowered symmetry around ^{99}Tc . Failure to observe a unique bridging ^{17}O environment can be attributed to the effects of two ^{99}Tc nuclei spin-spin coupled to one ^{17}O . This Table 11. 99Tc Longitudinal Relaxation Times for Technetium(VII) Species |
 | | | |---|-----------------------------|---------------| | species | solvent | T_1 , s^a | |
TcH _o ²⁻ | 40% KOH in H ₂ O | 0.023 | | | 'D,O | 0.139 | | | $Me_{3}SO-d_{6}$ | 0.139 | | TcO₄-b | acetonitrile-d3 | 0.132 | | | acetone- d_6 | 0.111 | | | methanol- d_{A} | 0.091 | | TcO ₃ F | HF | 0.018 | | TcO ₃ + | HF | < 0.001 | | TcO,F, | HF | 0.003 | | Tc ₂ O ₅ F ₄ | HF | < 0.001 | | | | | ^a All T_1 values were obtained at 25 °C with the exception of that for TcH_0^{2-} , which was obtained at -16 °C. ^b NH_4TcO_4 , 0.24 M; $T_1(^{17}O) = 0.202$ s for TcO_4^- in H_2O . would give rise to a broad, partially quadrupole-collapsed 19-line multiplet (relative intensity ratios 1:2:3:4:5:6:7:8:9:10:9:8:7:6:5:4:3:2:1) having one-fourth the intensity of the terminal oxygen environment. The line width and low intensity of the line presumably preclude observation of the bridging environment of $Tc_2O_5F_4$ with the present instrumentation and level of ^{17}O enrichment. Further studies of these new oxyfluoro species of technetium-(VII) and TcO₃⁺AsF₆⁻ are currently in progress. [TcO₂(CN)₄]³⁻. The ⁹⁹Tc NMR spectrum of *trans*-dioxotetracyanotechnetate(V) represents the only Tc(V) compound characterized thus far by ⁹⁹Tc NMR spectroscopy. The spectrum consists of a broad line in H₂O solvent and is the highest frequency ⁹⁹Tc chemical shift observed thus far. The deshielding of Tc(V) with respect to Tc(VII) is contrary to the trend anticipated on the basis of oxidation states alone. The valence shell in Tc(VII) compounds is mainly of s and p origin; there are no low-lying excited states created by ligand field splitting of the d orbitals. Consequently, the paramagnetic contribution to ⁹⁹Tc shielding will be small in Tc(VII) compounds compared to that for diamagnetic d² Tc(V) species such as [TcO₂(CN)₄)³⁻. T_1 Relaxation Times. The ⁹⁹Tc and ¹⁷O spin-lattice relaxation times, T_1 , of technetium(VII) species are summarized in Table II. Kidd^{1b} has reported a line width of $\Delta \nu = 29$ Hz for aqueous TcO_4^- , a value that is substantially greater than that reported in our study. From eq 1, our value of 2.7 Hz yields a value of 0.118 s for T_1 and is in good agreement with the T_1 value of 0.139 s determined by the inversion-recovery method in the present study. Line widths of 99Tc resonance are mainly due to the direct quadrupolar relaxation $\Delta \nu = 1/(\pi T_2)$. In the short correlation time limit for such an interaction, the transverse and longitudinal relaxation times, T_2 and T_1 , are equal according to eq 1, and nuclear quadrupole relaxation dominates the spin-lattice relaxation time T_1 . This is corroborated by a correlation between spin-lattice relaxation times and electric field gradients for the series TcO₄, TcO_3F , TcO_3^+ in which T_1 and $1/(\pi\Delta\nu)$ decrease from left to right. In general, there is a good correlation among T_1 , $\Delta \nu$, and the electric field gradient at ${}^{99}\text{Tc}$. Even though ${}^{99}\text{Tc}$ should possess an electric field gradient of zero in TcO₄, the efficient relaxation of 99Tc is presumably also brought about by quadrupolar relaxation. The electric field gradient can be modulated by mixing the asymmetric molecular vibrations. This theory, first originated by Valiev, has more recently been extended to the case of a quadrupolar nucleus at the center of a molecule belonging to a cubic point group.8 The effective electric field gradient at 99Tc in aqueous TcO_4^- estimated from eq 1 with $T_1 = 0.139$ s and $\tau_c = 8.1 \times 10^{-12}$ s is $eq = -0.15 \times 10^{15}$ esu. Kidd^{1b} has reported a value of 0.33 \times 10¹⁵ esu based on a T_1 value estimated from an inaccurate line width (29 Hz) and quadrupole moment (0.3 \times 10⁻²⁸ m²). The quadrupole moment value we have chosen to use $(-0.19 (5) \times 10^{-28} \text{ M}^2)$ agrees with the predictions of the single-particle nuclear shell model. Both calculations assume τ_c $= 8.1 \times 10^{-12} \text{ s.}$ ## **Experimental Section** All operations were conducted in laboratories that were monitored routinely by the McMaster University Health Physics Group for radioactive contamination. All work involving 99Tc was performed according to the regulations and recommendations of the Canadian Atomic Energy Control Board. Apparatus and Materials. All manipulations involving air-sensitive materials were carried out under anhydrous conditions in a dry box or, in the case of volatile fluorides, on a vacuum line constructed from 316 stainless steel, nickel, Teflon, and FEP. All preparative work involving XeF₆ and KrF₂ was carried out in 7-mm or 3.5-mm o.d lengths of FEP tubing. The tubing was heat sealed at one end and connected through a 45° SAE flare to a Teflon (Du Pont) valve to form the reaction vessel. NH₄TcO₄ (Oak Ridge National Laboratories) was purified by recrystallization from 30% hydrogen peroxide. KTcO₄ was prepared from crude NH₄TcO₄ by crystallization from H₂O₂ solution containing a stoichiometric amount of KOH. Pertechnetate salts were dried under dynamic vacuum for 24 h prior to use. Water enriched in ¹⁷O (21.9%) and ¹⁸O (42.7%) (Office de Rayonnements Ionisants, Saclay, France) was used to prepare enriched samples of TcO₄ by heating 0.75 g of KTcO₄ with 1 mL of enriched water in a sealed tube for 1 week at 100 K_2TcH_9 was synthesized according to the method of Ginsberg.⁴ Commercial samples of the solvents D_2O , acetone- d_6 , dimethyl- d_6 sulfoxide (Stohler Isotope Chemicals), acetonitrile- d_3 and methanol- d_4 (Merck) were used without further purification. KrF₂, 9 XeF₆, 10 and AsF₅ 11 were prepared as described elsewhere. Commercial anhydrous HF (Matheson) was dried by storage under 6 atm of F₂ gas for 1 month in a nickel vessel prior to use. Sample Preparations. With the exception of samples containing HF solvent, all NMR samples were prepared in 8- or 10-mm o.d. standard wall tubing and attached by means of 0.25 in. Teflon nuts and ferrules to Teflon diaphragm valves. All samples were degassed and sealed under vacuum. Samples containing HF solvent were prepared by heat sealing (7) Valiev, K. A.; Zaripov, M. M. Sov. Phys.-JETP (Engl. Transl.) 1962, their respective 3.5- and 7-mm o.d. reaction vessels under vacuum and inserting them into 5-mm (¹⁹F) and 10-mm (¹⁷O and ⁹⁹Tc) precision glass NMR tubes. Hydrogen fluoride solutions of TcO₃F were prepared by condensing anhydrous HF onto KTcO4 in FEP reaction tubes at -196 °C (0.030 g of KTcO₄, 0.20 g of HF, in 3.5-mm tubes; 0.090 g of KTcO₄, 1.0 g of HF, in 7-mm tubes). KTcO₄ rapidly dissolved in HF upon warming to room temperature, yielding colorless to very pale yellow solutions. The resulting solutions of TcO₃F were treated with a fivefold excess of AsF₅ condensed into the sample at -196 °C to yield solutions of TcO₃+AsF₆ and H₃O⁺AsF₆⁻¹³ at room temperature. The latter solutions were pumped to dryness and maintained under dynamic vacuum for 2 h. Upon redissolution in HF, no changes in the 99Tc and 17O chemical shifts or line widths were observed, demonstrating that TcO₃+AsF₆- is stable to pumping at room temperature. Solutions of TcO₃F prepared as described above were treated with either a twofold excess of XeF6 to yield Tc2O5F4 or a sixfold excess of KrF₂ to yield TcO₂F₃. Both XeF₆ and KrF₂ react rapidly with TcO₃F (and H₂O liberated in the solvolysis of TcO₄ by HF) to give Tc₂O₅F₄. The reaction of Tc₂O₅F₄ with KrF₂ at room temperature is slow, requiring several hours to go to completion. The slow competing autodecomposition of KrF2 to Kr and F2 in HF requires that large excesses of KrF₂ be used to ensure complete reaction. Nuclear Magnetic Resonance Spectroscopy. Fluorine-19, technetium-99, and oxygen-17 spectra were obtained on Bruker WH-90 and proton spectra on Bruker WP-80 Fourier-transform spectrometers. All spectra were accumulated in 16K memories with the exception of proton spectra, which were accumulated in an 8K memory. Fluorine-19 spectra were ²H-locked by using an external D₂O lock sample located in the probehead. Technetium-99 and oxygen-17 spectra were either locked to the deuterated solvent or to D₂O placed in the annular cavity formed by a 7-mm FEP tube or 8-mm precision glass tube contained in a 10-mm precision glass tube. Proton spectra were run at 80.00 MHz in a 5-mm precision glass tube containing an acetone- d_6 capillary for locking and accumulated in 80 scans by using a spectral width of 2.5 kHz (0.61 Hz/data point; acquistion time, 1.64 s) and a pulse width of 7.4 μ s. Oxygen-17 spectra on ¹⁷O-enriched samples were obtained at 12.20 MHz in 30 000-50 000 scans with a spectral width of 50 kHz (6.1 Hz/data point; acquistion time, 0.163 s) and a pulse width of 35 μ s. Technetium-99 spectra were obtained at 20.27 MHz in 500-2000 scans with a spectral width of 25 kHz (3.0 Hz/data point; acquistion time, 0.327 s) and a pulse width of 20 μ s for multiple scan spectra. For single-pulse spectra of TcO₄, the data point resolution was 0.048 Hz (spectral width, 400 Hz; acquistion time, 20.48 s) with a pulse width of 35 μ s. Fluorine-19 spectra were recorded at 84.66 MHz in 300-400 scans with use of a spectral width of 30 kHz (3.7 Hz/data point; acquistion time, 0.270 s) and a pulse width of 2 μ s. Spin-lattice relaxation limes, T_1 , were measured in degassed, vacuum sealed samples by the standard $(\pi - \tau - \pi/2)$ sequence with accumulation of the free-induction decay after the $\pi/2$ pulse. Variable-temperature studies were carried out with use of Bruker temperature controllers. Temperatures were measured with a thermocouple inserted directly into the sample region of the probe and were accurate to ±1 °C. Acknowledgments. We thank the Natural Sciences and Engineering Research Council of Canada and the Science and Engineering Board, McMaster University, for financial support and Professor A. Davison (Massachusetts Institute of Technology) for the sample of $K_3[TcO_2(CN)_4]$. Note Added in Proof. Recently, we have observed ⁹⁹Tc signals for the lower oxidation states I and III: $Tc(R_3CNC)_6^+$, R = H, CH₃ ($\delta_{PP_{Tc}}$ -1908, $\omega_{1/2}$ = 74 Hz); Tc(CN)₇⁴⁻ ($\delta_{PP_{Tc}}$ -1329, $\omega_{1/2}$ = 5000 Hz). Registry No. 99Tc, 14133-76-7; K₂TcH₉, 60950-18-7; KTcO₄, 13718-33-7; TcO_3F , 42246-22-0; $\text{TcO}_3^+\text{AsF}_6^-$, 82555-95-1; $\text{Tc}_2\text{O}_5\text{F}_4$, 82555-96-2; TcO_2F_3 , 82555-97-3; $\text{K}_3[\text{TcO}_2(\text{CN})_4]$, 73466-61-2; ¹⁷O, 13698-48-4; ¹⁸O, 14797-71-8. ⁽⁸⁾ Doddrell, D. M.; Bendall, Mm. R.; Healy, P. C.; Smith, G.; Kennard, C. H. L.; Ralston, C. L.; White, A. H. Aust. J. Chem. 1979, 32, 1219. (9) Schreiner, F.; Malm, J. G.; Hindman, J. C. J. Am. Chem. Soc. 1965, 87, 25. ⁽¹⁰⁾ Malm, J. G.; Chernick, C. L. Inorg. Synth. 1966, 9, 258. (11) Keller, N.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 2118. (12) Schrobilgen, G. J. Ph.D. Thesis, McMaster University, Hamilton, Ontario, 1974. ⁽¹³⁾ Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1975, 14,